



# Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level In Statistics S1 (WST01) Paper 01

#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023 Question Paper Log Number P72072A Publications Code WST01\_01\_MS\_2301 All the material in this publication is copyright © Pearson Education Ltd 2023

#### **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

### PEARSON EDEXCEL IAL MATHEMATICS

# **General Instructions for Marking**

1. The total number of marks for the paper is 75.

2. The Edexcel Mathematics mark schemes use the following types of marks:

# <u>'M' marks</u>

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation. e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

(i) should have the correct number of terms

(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct

e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

## <u>'A' marks</u>

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

## <u>'B' marks</u>

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:

If all but one attempt is crossed out, mark the attempt which is NOT crossed out. If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

## Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

| Question |                                                                                                                                              | Sche                                                                                                                                                                              | eme                              |                                 |                                    |                        |             | Ma      | rks          |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|------------------------------------|------------------------|-------------|---------|--------------|
|          | Time                                                                                                                                         | taken (t minutes)                                                                                                                                                                 | 5 - 10                           | 10 - 14                         | 14 – 18                            | 18 - 25                | 25 - 40     |         |              |
| 1 (a)    | Time                                                                                                                                         | taken ( <i>i</i> minutes)                                                                                                                                                         | 5 10                             | 10 14                           | 14 10                              | 10 25                  | 25 40       | B1      |              |
|          | Frequ                                                                                                                                        | iency (f)                                                                                                                                                                         | 10                               | 16                              | 24                                 | 35                     | 15          |         |              |
|          |                                                                                                                                              |                                                                                                                                                                                   |                                  |                                 |                                    |                        | <u> </u>    |         | (1)          |
| (1-)     | $10 + 16 + (2 \times 6)$ or $10 + 16 + \frac{24}{24}$ or $\frac{x - 26}{16 - 14} = \frac{16 - 14}{16}$                                       |                                                                                                                                                                                   |                                  |                                 |                                    |                        | M1          |         |              |
| (0)      | 10 + 10                                                                                                                                      | $+(2 \times 0) 01 10 + 10$                                                                                                                                                        | $\frac{1}{2}$ or                 | $\frac{1}{50-26}$               | 18 - 14                            |                        |             | IVII    |              |
|          | = 38                                                                                                                                         |                                                                                                                                                                                   |                                  |                                 |                                    |                        |             | A1      |              |
|          |                                                                                                                                              |                                                                                                                                                                                   |                                  |                                 |                                    |                        |             |         | (2)          |
| (c)      | $\sum ft = 7.5 \times 10 + 12 \times 16 + 16 \times 24 + 21.5 \times 35' + 32.5 \times 15' = 1891$                                           |                                                                                                                                                                                   |                                  |                                 |                                    | M1                     |             |         |              |
|          |                                                                                                                                              | <br>1891                                                                                                                                                                          |                                  |                                 |                                    |                        |             |         |              |
|          | Mean =                                                                                                                                       | $\frac{1091}{100} = 18.91$                                                                                                                                                        |                                  |                                 |                                    |                        |             | A1      |              |
|          |                                                                                                                                              | 100                                                                                                                                                                               |                                  |                                 |                                    |                        |             | _       | (2)          |
|          |                                                                                                                                              |                                                                                                                                                                                   |                                  |                                 |                                    |                        |             | (2)     |              |
| (d)      | Standard                                                                                                                                     | deviation = $\sqrt{\frac{41033}{100}}$ -                                                                                                                                          | $\left(\frac{1891}{100}\right)'$ | or $\sqrt{\frac{410}{-100}}$    | $\frac{133 - 100 \times 100}{200}$ | 18.91                  |             | M1      |              |
|          |                                                                                                                                              | V 100                                                                                                                                                                             | (100)                            | <u> </u>                        | 99                                 |                        |             |         |              |
|          | <b>- - - - - - - - - -</b>                                                                                                                   | = 7.262                                                                                                                                                                           |                                  | or 7.2                          | 98 a                               | wrt 7.26 or            | awrt        | A1      |              |
|          | 7.3[0]                                                                                                                                       |                                                                                                                                                                                   |                                  |                                 |                                    |                        |             | _       | ( <b>2</b> ) |
|          |                                                                                                                                              | 15                                                                                                                                                                                |                                  |                                 | 15.25                              |                        |             |         | (2)          |
|          | [LQ =] 1                                                                                                                                     | $0 + \frac{15}{16}(14 - 10) = 13.75$                                                                                                                                              | 5]                               | [LQ =] 10                       | $0 + \frac{15.25}{16} (1$          | 4 - 10) [= 1           | 3.8125]     |         |              |
|          |                                                                                                                                              |                                                                                                                                                                                   |                                  |                                 |                                    |                        |             |         |              |
|          | or $14 - \frac{1}{16}(14 - 10)[= 13.75]$ or $14 - \frac{0.75}{16}(14 - 10)[= 13.8125]$                                                       |                                                                                                                                                                                   |                                  |                                 |                                    |                        |             |         |              |
| (e)      | 0 - 1                                                                                                                                        | 10 $10$ $10$ $25-10$ $0 -10$ $2525-10$                                                                                                                                            |                                  |                                 |                                    |                        | M1          | M1      |              |
|          | or $\frac{Q_1 - 1}{14}$                                                                                                                      | $\frac{10}{-10} = \frac{25 \cdot 10}{26 - 10} [= 13.75] \qquad \qquad \text{or } \frac{Q_1 - 10}{14 - 10} = \frac{25.25 - 10}{26 - 10} [= 13.8125]$                               |                                  |                                 |                                    |                        |             |         |              |
|          | 0 -1                                                                                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              |                                  |                                 |                                    |                        |             |         |              |
|          | or $\frac{Q_1}{14}$                                                                                                                          | $\frac{1}{0} = \frac{25 - 20}{26 - 10} [= 13.75]$                                                                                                                                 |                                  | or $\frac{Q_1}{14}$             | $\frac{1}{2} = \frac{23.23}{26}$   | $\frac{20}{0} = 13.81$ | 125]        |         |              |
|          | $I_{14} = 1$<br>$I_{0R} = 2$                                                                                                                 | $\frac{0}{3}$ - '13 75'                                                                                                                                                           |                                  | $I_{14} = 10$<br>$I_{10R} = 23$ | 20-1                               | 0                      |             | M1      |              |
|          | =9                                                                                                                                           | -9.25                                                                                                                                                                             |                                  | = awrt 9.19                     |                                    |                        |             |         |              |
|          | <b>).</b>                                                                                                                                    |                                                                                                                                                                                   |                                  | aw                              | 11 7.17                            |                        |             |         | (3)          |
|          |                                                                                                                                              |                                                                                                                                                                                   | No                               | otes                            |                                    |                        |             | Tota    | ul 10        |
| (2)      | R1                                                                                                                                           | for 35 and 15 (If answer                                                                                                                                                          | s given are                      | in both the t                   | able and ans                       | wer lines th           | en mark the | answers | ;            |
| (a)      | BI given in the table)                                                                                                                       |                                                                                                                                                                                   |                                  |                                 |                                    |                        |             |         |              |
| (b)      | <b>M1</b> for $10 + 16 + (2 \times 6)$ or $10 + 16 + \frac{24}{24}$ or $\frac{x - 26}{x - 26} = \frac{16 - 14}{x - 26}$                      |                                                                                                                                                                                   |                                  |                                 |                                    |                        |             |         |              |
|          |                                                                                                                                              | 2 50-26 18-14                                                                                                                                                                     |                                  |                                 |                                    |                        |             |         |              |
|          | Al                                                                                                                                           |                                                                                                                                                                                   |                                  |                                 |                                    |                        |             |         |              |
| (c)      | M1                                                                                                                                           | A correct method for finding $\sum ft$ May be implied by 1891 Allow one error                                                                                                     |                                  |                                 |                                    |                        |             |         |              |
| ( 1)     | A1                                                                                                                                           | 18.91 Allow 18.9                                                                                                                                                                  |                                  |                                 |                                    |                        |             |         |              |
| (d)      | M1                                                                                                                                           | for a correct calculation of the standard deviation ft their mean                                                                                                                 |                                  |                                 |                                    |                        |             |         |              |
|          | AI                                                                                                                                           | awrt 7.20 or awrt 7.3 11                                                                                                                                                          | $\frac{\text{using } n-1}{1}$    | 0                               | 10 25 - 1                          | 0 - 0 - 1/             | 1 25-26     |         |              |
|          |                                                                                                                                              | for $10 + \frac{15}{16}(14 - 10)$ or $14 - \frac{1}{16}(14 - 10)$ or $\frac{Q_1 - 10}{14 - 10} = \frac{25 - 10}{26 - 10}$ or $\frac{Q_1 - 14}{14 - 10} = \frac{25 - 26}{26 - 10}$ |                                  |                                 |                                    |                        |             |         |              |
| (e)      | M1 $15,25,\ldots,0.75,\ldots,010,25,25-10,0,-14,2$                                                                                           |                                                                                                                                                                                   |                                  |                                 |                                    | 25 25-                 | -26         |         |              |
|          | or $10 + \frac{1000}{16}(14 - 10)$ or $14 - \frac{000}{16}(14 - 10)$ or $\frac{21}{14 - 10} = \frac{20000}{26 - 10}$ or $\frac{21}{14 - 10}$ |                                                                                                                                                                                   |                                  |                                 | or $\frac{2}{14-10} =$             | $\frac{25.25}{76-1}$   | 0           |         |              |
|          | M1                                                                                                                                           | UO - LO ft their LO r                                                                                                                                                             | rovided LC                       | ) < U()                         | 17-10                              | 20-10                  | 14-10       | 20-1    | 0            |
|          | A1                                                                                                                                           | For 9.25 or awrt 9.19 if                                                                                                                                                          | $\frac{n+1}{n+1}$ is used        | <u>- x</u>                      |                                    |                        |             |         |              |

| Question                 |                                                                                                                                                | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              | Marks                                                            |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 2 (a)                    | 200                                                                                                                                            | $G \xrightarrow{4}{4} G \xrightarrow{5}{13} B$ $G \xrightarrow{4}{8} B \xrightarrow{7}{13} G$ $G \xrightarrow{4}{8} B \xrightarrow{7}{13} G$ $G \xrightarrow{7}{13} G$ $G \xrightarrow{7}{13} G$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{\frac{5}{8} & \frac{3}{8}}{\frac{8}{13} & \frac{5}{13}}{\frac{7}{13} & \frac{6}{13}}$ | B1<br>B1                                                         |
|                          |                                                                                                                                                | $B = \begin{bmatrix} 5\\8\\8\\8\\8\\B\\7\\13\\B\end{bmatrix} = \begin{bmatrix} 6\\13\\6\\7\\13\\B\end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>13</u> & <u>13</u>                                                                        | B1<br>(3)                                                        |
| (b)                      | $\frac{5}{9} \times \frac{4}{8} + \frac{4}{9}$                                                                                                 | $\frac{5}{9} \times \frac{4}{8} + \frac{4}{9} \times \frac{5}{8} = \frac{5}{9} \text{ oe}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                              |                                                                  |
| (c)                      | $\frac{5}{9} \times \frac{4}{8} \times \frac{8}{13} + \frac{4}{9} \times \frac{3}{8} \times \frac{7}{13} = \frac{61}{234} \text{ oe}$          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                              | M1 A1 (2)                                                        |
| (d)                      | $\frac{\frac{5}{9} \times \frac{4}{8} \times \frac{8}{13}}{\frac{61}{234}} = \frac{\frac{20}{117}}{\frac{61}{234}} = \frac{40}{61} \text{ oe}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                              |                                                                  |
|                          | 234                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                              |                                                                  |
|                          | 234                                                                                                                                            | L 234 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                              | (3)<br>Total 10                                                  |
| (a)                      | 234<br>B1                                                                                                                                      | $\frac{1}{234}$ Notes for $\frac{5}{8} \& \frac{3}{8}$ in the correct place on the 2 <sup>nd</sup> branches Allow 0.625 & 0.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | or 62.5% & 3                                                                                 | (3)<br>Total 10<br>37.5%                                         |
| (a)                      | 234<br>B1<br>B1                                                                                                                                | $\frac{1}{234}$ Notes<br>for $\frac{5}{8} & \frac{3}{8}$ in the correct place on the 2 <sup>nd</sup> branches Allow 0.625 & 0.375 of $\frac{1}{13}$ for $\frac{8}{13} & \frac{5}{13}$ in the correct place on the 3 <sup>rd</sup> branches Allow awrt 0.615 & 61.5% & awrt 38.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or 62.5% & 3<br>awrt 0.385 c                                                                 | (3)<br><b>Total 10</b><br>37.5%<br>or awrt                       |
| (a)                      | 234<br>B1<br>B1<br>B1                                                                                                                          | $\begin{bmatrix} 234 \end{bmatrix}$ Notes for $\frac{5}{8} \& \frac{3}{8}$ in the correct place on the 2 <sup>nd</sup> branches Allow 0.625 & 0.375 of $\frac{8}{13} \& \frac{5}{13}$ in the correct place on the 3 <sup>rd</sup> branches Allow awrt 0.615 & 61.5% & awrt 38.5% for $\frac{7}{13} \& \frac{6}{13}$ in both correct places on the 3 <sup>rd</sup> branches Allow awrt 0.538 53.8% or awrt 46.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | or 62.5% & 3<br>awrt 0.385 c<br>& awrt 0.462                                                 | (3)<br><b>Total 10</b><br>37.5%<br>or awrt<br>2 or awrt          |
| (a)                      | 234<br>B1<br>B1<br>M1                                                                                                                          | $ \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or 62.5% & 3<br>awrt 0.385 c<br>& awrt 0.462                                                 | (3)<br><b>Total 10</b><br>37.5%<br>or awrt<br>2 or awrt          |
| (a)<br>(b)               | 234<br>B1<br>B1<br>M1<br>A1                                                                                                                    | $\begin{bmatrix} 234 \end{bmatrix}$ Notes<br>for $\frac{5}{8} \& \frac{3}{8}$ in the correct place on the 2 <sup>nd</sup> branches Allow 0.625 & 0.375 e<br>for $\frac{8}{13} \& \frac{5}{13}$ in the correct place on the 3 <sup>rd</sup> branches Allow awrt 0.615 &<br>61.5% & awrt 38.5%<br>for $\frac{7}{13} \& \frac{6}{13}$ in both correct places on the 3 <sup>rd</sup> branches Allow awrt 0.538<br>53.8% or awrt 46.2%<br>for $\frac{5}{9} \times \frac{4}{8} + \frac{4}{9} \times \frac{5}{8}$ ' ft their tree diagram provided these are probabilities<br>Allow $\frac{5}{9} \times \frac{4}{8} \times \frac{7}{13} + \frac{5}{9} \times \frac{4}{8} \times \frac{6}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{7}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{6}{13}$ '<br>$\frac{5}{9}$ oe Allow awrt 0.556 or awrt 55.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | or 62.5% & 3<br>awrt 0.385 c<br>& awrt 0.462                                                 | (3)<br><b>Total 10</b><br>37.5%<br>or awrt<br>2 or awrt          |
| (a)<br>(b)<br>(c)        | 234<br>B1<br>B1<br>M1<br>A1<br>M1                                                                                                              | $\begin{bmatrix} 234 \end{bmatrix}$ Notes for $\frac{5}{8} \otimes \frac{3}{8}$ in the correct place on the 2 <sup>nd</sup> branches Allow 0.625 & 0.375 of for $\frac{8}{13} \otimes \frac{5}{13}$ in the correct place on the 3 <sup>rd</sup> branches Allow awrt 0.615 & 61.5% & awrt 38.5% for $\frac{7}{13} \otimes \frac{6}{13}$ in both correct places on the 3 <sup>rd</sup> branches Allow awrt 0.538 53.8% or awrt 46.2% for $\frac{5}{9} \times \frac{4}{8} + \frac{4}{9} \times \frac{5}{8}$ 'ft their tree diagram provided these are probabilities Allow $\frac{5}{9} \times \frac{4}{8} \times \frac{7}{13} + \frac{5}{9} \times \frac{4}{8} \times \frac{6}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{7}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{6}{13}$ $\frac{5}{9}$ oe Allow awrt 0.556 or awrt 55.6% for $\frac{5}{9} \times \frac{4}{8} \times \frac{8}{13} + \frac{4}{9} \times \frac{3}{8} \times \frac{7}{13}$ ft their tree diagram provided these are provided thes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | or 62.5% & 2<br>awrt 0.385 c<br>& awrt 0.462                                                 | (3)<br><b>Total 10</b><br>37.5%<br>or awrt<br>2 or awrt          |
| (a)<br>(b)<br>(c)        | 234<br>B1<br>B1<br>M1<br>A1<br>M1<br>A1                                                                                                        | $\frac{1}{234}$ Notes $\frac{1}{5} \sqrt{3} \sqrt{3} \frac{3}{8} \text{ in the correct place on the } 2^{nd} \text{ branches Allow } 0.625 \& 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.375 \ 0.37$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or 62.5% & 3<br>awrt 0.385 c<br>& awrt 0.462                                                 | (3)<br><b>Total 10</b><br>37.5%<br>or awrt<br>2 or awrt          |
| (a)<br>(b)<br>(c)<br>(d) | 234<br>B1<br>B1<br>M1<br>A1<br>M1<br>A1<br>M1                                                                                                  | $\frac{1}{234}$ Notes for $\frac{5}{8} \\ \frac{3}{8} \\ \frac{3}{8}$ in the correct place on the 2 <sup>nd</sup> branches Allow 0.625 & 0.375 for $\frac{5}{8} \\ \frac{8}{3} \\ \frac{5}{13} \\ $ | or 62.5% & 3<br>awrt 0.385 c<br>& awrt 0.462                                                 | (3)<br><b>Total 10</b><br>37.5%<br>or awrt<br>2 or awrt          |
| (a)<br>(b)<br>(c)<br>(d) | 234<br>B1<br>B1<br>M1<br>A1<br>M1<br>A1<br>M1<br>A1ft                                                                                          | NotesNotesfor $\frac{5}{8} & \frac{3}{8}$ in the correct place on the 2 <sup>nd</sup> branches Allow 0.625 & 0.375 orfor $\frac{8}{13} & \frac{5}{13}$ in the correct place on the 3 <sup>rd</sup> branches Allow awrt 0.615 &61.5% & awrt 38.5%for $\frac{7}{13} & \frac{6}{13}$ in both correct places on the 3 <sup>rd</sup> branches Allow awrt 0.53853.8% or awrt 46.2%for $\frac{5}{9} \times \frac{4}{8} + \frac{4}{9} \times \frac{5}{8}$ if their tree diagram provided these are probabilitiesAllow $\frac{5}{9} \times \frac{4}{8} \times \frac{7}{13} + \frac{5}{9} \times \frac{4}{8} \times \frac{6}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{7}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{6}{13}$ Solution of the second of the seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | or 62.5% & 3<br>awrt 0.385 c<br>& awrt 0.462<br>•obabilities                                 | (3)<br>Total 10<br>37.5%<br>or awrt<br>2 or awrt<br>agram If the |

| Question |                                                           | Scheme                                                                                                                                                                                                  |                                                                                                                                     |                                                  |
|----------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 3 (a)    | $E(X) = 2a + 3 \times 0.4 + 4(0.6 - a) [= 3.6 - 2a]$      |                                                                                                                                                                                                         |                                                                                                                                     | M1 A1                                            |
|          |                                                           |                                                                                                                                                                                                         |                                                                                                                                     | (2)                                              |
| (b)      | 0 < a < 0                                                 | ).6 oe                                                                                                                                                                                                  |                                                                                                                                     | B1                                               |
|          | $2 \times 0.6 +$                                          | $3 \times 0.4 = 2.4$ or $3.6 - 2 \times 0.6 = 2.4$                                                                                                                                                      | Alternative                                                                                                                         |                                                  |
|          | and                                                       |                                                                                                                                                                                                         | 0 > -2a > -1.2                                                                                                                      | M1                                               |
|          | $3 \times 0.4 +$                                          | $4 \times 0.6[=3.6]$ or $3.6 - 2 \times 0[=3.6]$                                                                                                                                                        | 3.6 > 3.6 - 2a > 2.4                                                                                                                |                                                  |
|          | 2.4 < E(.)                                                | X) < 3.6                                                                                                                                                                                                |                                                                                                                                     | A1                                               |
|          | <b>T</b> T ( <b>T</b> T)                                  | $\mathbf{P}(\mathbf{W}^2) = \mathbf{P}(\mathbf{W})^2$                                                                                                                                                   |                                                                                                                                     | (3)                                              |
| (c)      | Var(X) =                                                  | $= E(X^2) - E(X)^2$                                                                                                                                                                                     |                                                                                                                                     |                                                  |
|          | $E(X^2) =$                                                | = 4a + 3.6 + 9.6 - 16a [= 13.2 - 12a]                                                                                                                                                                   |                                                                                                                                     | M1 A1                                            |
|          | $\operatorname{Var}(X) = ((13.2 - 12a)) - ((3.6 - 2a))^2$ |                                                                                                                                                                                                         |                                                                                                                                     | M1                                               |
|          | $-4a^2+2$                                                 | .4a - 0.32 = 0                                                                                                                                                                                          |                                                                                                                                     | A1                                               |
|          | -'2.4                                                     | $4' \pm \sqrt{2.4'^2 - 4 \times - 4' \times - 0.32'}$                                                                                                                                                   |                                                                                                                                     | M1                                               |
|          | <i>a</i> =                                                | 2×'-4'                                                                                                                                                                                                  |                                                                                                                                     | 111                                              |
|          | $a = \frac{1}{2}$                                         | $a = \frac{2}{2}$                                                                                                                                                                                       |                                                                                                                                     | Al                                               |
|          | 5                                                         | 5                                                                                                                                                                                                       |                                                                                                                                     |                                                  |
|          |                                                           | Notes                                                                                                                                                                                                   |                                                                                                                                     | (6)<br>Total 11                                  |
| (a)      | M1                                                        | for an attempt to find $E(X)$ with 2 out of the 3 pr                                                                                                                                                    | oducts correct                                                                                                                      | 10(a) 11                                         |
|          | A1                                                        | for $2a+1.2+4(0.6-a)$ oe                                                                                                                                                                                |                                                                                                                                     |                                                  |
| (b)      | R1                                                        | This may be seen as two separate parts e.g. $a > 0$                                                                                                                                                     | ) and $a < 0.6$ , Allow the use of $\leq$ or 2                                                                                      | $\geq$ for < or >                                |
| (0)      | DI                                                        | We allow this to be written in words e.g. <i>a</i> is bet                                                                                                                                               | ween 0 and 0.6                                                                                                                      | 11                                               |
|          | M1                                                        | for a correct method for finding the lower and up $2.4 \le E(X) \le 3.6$ or sight of 2.4 and 3.6                                                                                                        | oper end of the range. May be implie                                                                                                | d by                                             |
|          | A1                                                        | Allow e.g. 2.4, 3.6–2 <i>a</i> , 3.6                                                                                                                                                                    |                                                                                                                                     |                                                  |
|          |                                                           | <b>NB</b> 2.4 < E(X) < 3.6 or 2.4, $3.6 - 2a$ , $3.6$ scores 3/3                                                                                                                                        |                                                                                                                                     |                                                  |
| (c)      | M1                                                        | An attempt at an expression for $E(X^2)$ with 2 t<br>Var(X)                                                                                                                                             | erms correct. May be seen in an atte                                                                                                | mpt at                                           |
|          | A 1                                                       | a correct expression for $E(X^2)$ May be seen in a                                                                                                                                                      | an attempt at Var(X) Does not have t                                                                                                | o be fully                                       |
|          | AI                                                        | simplified, allow $4a + 3.6 + 9.6 - 16a$ or better                                                                                                                                                      | -                                                                                                                                   | -                                                |
|          | <b>M1</b>                                                 | use of $\operatorname{Var}(X) = \operatorname{E}(X^2) - \operatorname{E}(X)^2$ ft their $\operatorname{E}(X)$                                                                                           | <sup>2</sup> ) and their part (a)                                                                                                   |                                                  |
|          | A1                                                        | a correct 3TQ e.g. $25a^2 - 15a + 2 = 0$                                                                                                                                                                |                                                                                                                                     |                                                  |
|          |                                                           | correct method for solving their 3TQ e.g. $(5a -$                                                                                                                                                       | 2)(5a-1) = 0                                                                                                                        |                                                  |
|          |                                                           | May be implied by $a = \frac{1}{5}$ and $a = \frac{2}{5}$                                                                                                                                               |                                                                                                                                     |                                                  |
|          | M1                                                        | If the 3TQ is incorrect then a correct substitution<br>and $c$ are both negative, allow the omission of ne<br>in the denominator) or a complete method using<br>must be seen before their values of $a$ | n of their values into the quadratic for<br>egatives in 4 <i>ac</i> and allow a correct si<br>completing the square or a correct fa | rmula (If <i>a</i><br>ngle value<br>actorisation |
|          | A1                                                        | $a = \frac{1}{5}$ oe and $a = \frac{2}{5}$ oe Allow any letter for $a$                                                                                                                                  |                                                                                                                                     |                                                  |

| Question | Scheme                                                                                                                                                                                                                                |                                                                                                                                                                     |                            |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| (i)(a)   | $\mathbf{n} \perp \mathbf{a} =$                                                                                                                                                                                                       | 7 = -2 = -2 = -2 = -2 = -2 = -2 = -2 = -                                                                                                                            | M1 M1                      |  |
| 4(1)(a)  | $p+q = -\frac{1}{2}$                                                                                                                                                                                                                  | $\frac{1}{25}$ $q + r = \frac{1}{5}$ $q + r = \frac{1}{25}$ $q = \frac{1}{25}$ $q = \frac{1}{25}$                                                                   | M1                         |  |
|          | 2 <i>p</i> +2 <i>q</i> -                                                                                                                                                                                                              | $+2r = \frac{7}{25} + \frac{1}{5} + \frac{8}{25} \left[ = \frac{4}{5} \right] *$                                                                                    | A1* (4)                    |  |
| (i)(b)   | eg $p+q$                                                                                                                                                                                                                              | +r+s=1                                                                                                                                                              | M1                         |  |
|          | $p = \frac{1}{5}$ of                                                                                                                                                                                                                  | e $q = \frac{2}{25}$ oe $r = \frac{3}{25}$ oe $s = \frac{3}{5}$ oe                                                                                                  | A1 A1<br>A1 A1             |  |
|          |                                                                                                                                                                                                                                       |                                                                                                                                                                     | (5)                        |  |
| (ii)     | $\frac{x}{x+5} + \frac{5}{x}$                                                                                                                                                                                                         | $\frac{x}{x+5} + \frac{5}{x} = \frac{x^2 + 5(x+5)}{x(x+5)}  \text{or}  \frac{x}{x+5} + \frac{5}{x} = \frac{x+5-5}{x+5} + \frac{5}{x}$                               |                            |  |
|          | $=\frac{x^2 + 5x + 25}{x^2 + 5x} \text{ or } = 1 - \frac{5}{x + 5} + \frac{5}{x}$                                                                                                                                                     |                                                                                                                                                                     |                            |  |
|          | $=1 + \frac{25}{x^2 + 5x} \text{ or as } x^2 + 5x + 25 > x^2 + 5x \ P(C) + P(D) > 1 \text{ or As } x + 5 > x \text{ then}$ $\frac{5}{x + 5} < \frac{5}{x} \Rightarrow -\frac{5}{x + 5} + \frac{5}{x} > 0 \text{ So } P(C) + P(D) > 1$ |                                                                                                                                                                     |                            |  |
|          | $P(C \cup D)$                                                                                                                                                                                                                         | $P > 1$ or $P(C \cap D) > 0$                                                                                                                                        | A1 cso                     |  |
|          | ×                                                                                                                                                                                                                                     |                                                                                                                                                                     | (4)                        |  |
|          |                                                                                                                                                                                                                                       | Notes                                                                                                                                                               | Total 13                   |  |
|          | NB                                                                                                                                                                                                                                    | In (i) Allow the use of exact decimals throughout and mark (a) and (b) together                                                                                     |                            |  |
| (i)(a)   | M1                                                                                                                                                                                                                                    | for $p+q = \frac{7}{25}$ or $p+q = P(A)$                                                                                                                            |                            |  |
|          | M1                                                                                                                                                                                                                                    | for $q + r = \frac{1}{5}$ oe or $q + r = P(B)$                                                                                                                      |                            |  |
|          | M1                                                                                                                                                                                                                                    | for $p+r = \frac{8}{25}$ oe or $p+r = P[(A \cap B') \cup (A' \cap B)]$                                                                                              |                            |  |
|          | A1*                                                                                                                                                                                                                                   | we must see $2p + 2q + 2r = \frac{7}{25} + \frac{1}{5} + \frac{8}{25}$ and no errors                                                                                |                            |  |
|          |                                                                                                                                                                                                                                       | any correct equation involving at least two of $p$ , $q$ , $r$ and $s$ . May be implied by two co                                                                   | orrect                     |  |
| (i)(b)   | M1                                                                                                                                                                                                                                    | values. Do not allow just $2p + 2q + 2r = \frac{4}{5}$ This mark may be awarded in part (a)                                                                         |                            |  |
|          | A1                                                                                                                                                                                                                                    | for $\frac{1}{5}$ or 0.2 oe This mark may be awarded in part (a)                                                                                                    |                            |  |
|          | A1                                                                                                                                                                                                                                    | for $\frac{2}{25}$ or 0.08 oe This mark may be awarded in part (a)                                                                                                  |                            |  |
|          | A1                                                                                                                                                                                                                                    | for $\frac{3}{25}$ or 0.12 oe This mark may be awarded in part (a)                                                                                                  |                            |  |
|          | A1                                                                                                                                                                                                                                    | for $\frac{3}{5}$ oe This mark may be awarded in part (a)                                                                                                           |                            |  |
|          | SC                                                                                                                                                                                                                                    | for one correct value M0 A1 A0 A0 A0                                                                                                                                |                            |  |
| (ii)     | M1                                                                                                                                                                                                                                    | For an attempt to add P(C) and P(D) e.g. $\frac{x^2}{x(x+5)} + \frac{5(x+5)}{x(x+5)}$ May be implied by $\frac{x^2}{x(x+5)}$ .<br>$1 - \frac{5}{x+5} + \frac{5}{x}$ | $\frac{+5x+25}{x^2+5x}$ or |  |
|          | M1                                                                                                                                                                                                                                    | For $\frac{x^2 + 5x + 25}{x^2 + 5x}$ or $1 - \frac{5}{x+5} + \frac{5}{x}$                                                                                           |                            |  |
|          | A1                                                                                                                                                                                                                                    | for recognising that $P(C) + P(D)$ is > 1                                                                                                                           |                            |  |
|          | A1 cso                                                                                                                                                                                                                                | a fully correct solution showing that C and D cannot be mutually exclusive                                                                                          |                            |  |

| Question                                      |                                                                                                                                                                                                                                                                                                                                              | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marks                                                                              |  |  |  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|
| 5 (a)                                         | P(L < 3.                                                                                                                                                                                                                                                                                                                                     | $(86) = P\left(Z < \pm \frac{3.86 - 4.5}{0.4}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1                                                                                 |  |  |  |
|                                               | = P(Z <                                                                                                                                                                                                                                                                                                                                      | (1-1.6) = 1 - 0.9452 or $1 - 0.945200 = 0.0548$ awrt 0.0548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1 A1<br>(3)                                                                       |  |  |  |
| (b)(i)                                        | P(L < Q)                                                                                                                                                                                                                                                                                                                                     | $P(L < Q_3) = 0.75$ gives $\frac{Q_3 - 4.5}{0.4} = 0.67$ or $P(L < Q_1) = 0.25$ gives $\frac{Q_1 - 4.5}{0.4} = -0.67$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |  |  |  |
|                                               | $[Q_3 = ]4.$                                                                                                                                                                                                                                                                                                                                 | 768 awrt 4.77 or $Q_1 = 4.232$ awrt 4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Al                                                                                 |  |  |  |
| (ii)                                          | $[Q_1 = ]'4$                                                                                                                                                                                                                                                                                                                                 | .232' awrt 4.23 or $[Q_3 =]$ '4.768' awrt 4.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1 ft (4)                                                                          |  |  |  |
| (c)                                           | $\frac{1.5('Q_3'-'Q_1')[=0.804]}{(0.81)}$                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |  |  |  |
|                                               | Lower li                                                                                                                                                                                                                                                                                                                                     | mit = $3.428$ ( $3.42 - 3.43$ ) Upper limit = $5.572$ ( $5.57 - 5.58$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1 A1<br>(3)                                                                       |  |  |  |
|                                               | P('3.42                                                                                                                                                                                                                                                                                                                                      | $P('3.42' < L < '5.58') = P\left(\frac{'3.42' - 4.5}{0.4} < Z < \frac{'5.58' - 4.5}{0.4}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                    |  |  |  |
| (d)                                           |                                                                                                                                                                                                                                                                                                                                              | $= \left[ P(-2.7 < Z < 2.7) \right] = 0.9930 *$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1* (3)                                                                            |  |  |  |
| (e)                                           | (Calculator gives 0.99306)<br>$P(5 < L < '5.58') = P\left(\frac{5-4.5}{0.4} < Z < \frac{'5.58'-4.5}{0.4}\right) = 0.1021$                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |  |  |  |
|                                               | (Calcula                                                                                                                                                                                                                                                                                                                                     | tor gives 0.10218) awrt 0.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |  |  |  |
|                                               | P(L > 5)                                                                                                                                                                                                                                                                                                                                     | $ '3.42' < L < '5.58') = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} \left[ = \frac{'0.102'}{0.993} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1                                                                                 |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                              | = 0.1027 awrt 0.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1 (4)                                                                             |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                              | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total 17                                                                           |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |  |  |  |
| (a)                                           | M1                                                                                                                                                                                                                                                                                                                                           | for standardising with 3.86, 4.5 and 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |  |  |  |
| (a)                                           | M1<br>M1<br>A1                                                                                                                                                                                                                                                                                                                               | for standardising with 3.86, 4.5 and 0.4<br>for $1 - p$ where $0.5for awrt 0.0548 (NB awrt 0.0548 scores 3/3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    |  |  |  |
| (a)                                           | M1<br>M1<br>A1<br>M1                                                                                                                                                                                                                                                                                                                         | for standardising with 3.86, 4.5 and 0.4<br>for $1 - p$ where $0.5 for awrt 0.0548 (NB awrt 0.0548 scores 3/3)for standardising with Q_2 or Q_1 (o.e.), 4.5 and 0.4 and setting equal to a z value, 0.65$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 <  z  < 0.7                                                                      |  |  |  |
| (a)<br>(b)(i)                                 | M1<br>M1<br>A1<br>M1<br>B1                                                                                                                                                                                                                                                                                                                   | for standardising with 3.86, 4.5 and 0.4<br>for $1 - p$ where $0.5 for awrt 0.0548 (NB awrt 0.0548 scores 3/3)for standardising with Q_3 or Q_1 (o.e.), 4.5 and 0.4 and setting equal to a z value, 0.65for use of 0.67,  z  = 0.675. This may be implied by a final answer of 4.769, or 4.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 <  z  < 0.7<br>2302                                                              |  |  |  |
| (a)<br>(b)(i)                                 | M1<br>M1<br>A1<br>M1<br>B1<br>A1                                                                                                                                                                                                                                                                                                             | for standardising with 3.86, 4.5 and 0.4<br>for $1 - p$ where $0.5 for awrt 0.0548 (NB awrt 0.0548 scores 3/3)for standardising with Q_3 or Q_1 (o.e.), 4.5 and 0.4 and setting equal to a z value, 0.65for use of 0.67,,  z , 0.675 This may be implied by a final answer of 4.769 or 4.2awrt 4.77 or awrt 4.23 for Q correctly labelled NB it is possible to score M1B0A1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 <  z  < 0.7<br>2302                                                              |  |  |  |
| (a)<br>(b)(i)                                 | M1<br>M1<br>A1<br>M1<br>B1<br>A1                                                                                                                                                                                                                                                                                                             | for standardising with 3.86, 4.5 and 0.4<br>for $1 - p$ where $0.5 for awrt 0.0548 (NB awrt 0.0548 scores 3/3)for standardising with Q_3 or Q_1 (o.e.), 4.5 and 0.4 and setting equal to a z value, 0.65for use of 0.67,,  z , 0.675 This may be implied by a final answer of 4.769 or 4.2awrt 4.77 or awrt 4.23 for Q_1 correctly labelled NB it is possible to score M1B0A1awrt 4.23 if Q_3 given in (i) or awrt 4.77 if Q_2 given in (i) ft their part (b)(i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 <  z  < 0.7<br>2302                                                              |  |  |  |
| (a)<br>(b)(i)<br>(b)(ii)                      | M1<br>M1<br>A1<br>M1<br>B1<br>A1<br>B1ft                                                                                                                                                                                                                                                                                                     | for standardising with 3.86, 4.5 and 0.4<br>for $1 - p$ where $0.5 \le p \le 1$<br>for awrt 0.0548 ( <b>NB</b> awrt 0.0548 scores 3/3)<br>for standardising with $Q_3$ or $Q_1$ (o.e.), 4.5 and 0.4 and setting equal to a <i>z</i> value, 0.65<br>for use of 0.67,, $ z $ , 0.675 This may be implied by a final answer of 4.769 or 4.2<br>awrt 4.77 or awrt 4.23 for $Q_1$ correctly labelled <b>NB</b> it is possible to score M1B0A1<br>awrt 4.23 if $Q_3$ given in (i) or awrt 4.77 if $Q_1$ given in (i) ft their part (b)(i)<br>You will need to check whether $Q_1 + Q_3 = 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 <  z  < 0.7<br>2302                                                              |  |  |  |
| (a)<br>(b)(i)<br>(b)(ii)<br>(c)               | M1<br>M1<br>A1<br>M1<br>B1<br>A1<br>B1ft<br>M1                                                                                                                                                                                                                                                                                               | for standardising with 3.86, 4.5 and 0.4<br>for $1 - p$ where $0.5 for awrt 0.0548 (NB awrt 0.0548 scores 3/3)for standardising with Q_3 or Q_1 (o.e.), 4.5 and 0.4 and setting equal to a z value, 0.65for use of 0.67,,  z , 0.675 This may be implied by a final answer of 4.769 or 4.2awrt 4.77 or awrt 4.23 for Q_1 correctly labelled NB it is possible to score M1B0A1awrt 4.23 if Q_3 given in (i) or awrt 4.77 if Q_1 given in (i) ft their part (b)(i)You will need to check whether Q_1 + Q_3 = 9use of 1.5(Q_3 - Q_1) ft their Q_3 and Q_1 If these are not correct then working must be sh$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 <  z  < 0.7<br>2302                                                              |  |  |  |
| (a)<br>(b)(i)<br>(b)(ii)<br>(c)               | M1<br>M1<br>A1<br>M1<br>B1<br>A1<br>B1ft<br>M1<br>A1                                                                                                                                                                                                                                                                                         | for standardising with 3.86, 4.5 and 0.4<br>for $1 - p$ where $0.5 \le p \le 1$<br>for awrt 0.0548 ( <b>NB</b> awrt 0.0548 scores 3/3)<br>for standardising with $Q_3$ or $Q_1$ (o.e.), 4.5 and 0.4 and setting equal to a <i>z</i> value, 0.65<br>for use of 0.67,, $ z $ , 0.675 This may be implied by a final answer of 4.769 or 4.2<br>awrt 4.77 or awrt 4.23 for $Q_1$ correctly labelled <b>NB</b> it is possible to score M1B0A1<br>awrt 4.23 if $Q_3$ given in (i) or awrt 4.77 if $Q_1$ given in (i) ft their part (b)(i)<br>You will need to check whether $Q_1 + Q_3 = 9$<br>use of $1.5(Q_3 - Q_1)$ ft their $Q_3$ and $Q_1$ If these are not correct then working must be sh<br>for lower limit awrt 3.42 to 3.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 <  z  < 0.7<br>2302                                                              |  |  |  |
| (a)<br>(b)(i)<br>(b)(ii)<br>(c)               | M1<br>M1<br>A1<br>M1<br>B1<br>A1<br>B1ft<br>M1<br>A1<br>A1                                                                                                                                                                                                                                                                                   | for standardising with 3.86, 4.5 and 0.4<br>for $1 - p$ where $0.5 \le p \le 1$<br>for awrt 0.0548 ( <b>NB</b> awrt 0.0548 scores 3/3)<br>for standardising with $Q_3$ or $Q_1$ (o.e.), 4.5 and 0.4 and setting equal to a <i>z</i> value, 0.65<br>for use of 0.67,, $ z $ , 0.675 This may be implied by a final answer of 4.769 or 4.2<br>awrt 4.77 or awrt 4.23 for $Q_1$ correctly labelled <b>NB</b> it is possible to score M1B0A1<br>awrt 4.23 if $Q_3$ given in (i) or awrt 4.77 if $Q_1$ given in (i) ft their part (b)(i)<br>You will need to check whether $Q_1 + Q_3 = 9$<br>use of $1.5(Q_3 - Q_1)$ ft their $Q_3$ and $Q_1$ If these are not correct then working must be sh<br>for lower limit awrt 3.42 to 3.43<br>for upper limit awrt 5.57 to 5.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 <  z  < 0.7<br>2302                                                              |  |  |  |
| (a)<br>(b)(i)<br>(b)(ii)<br>(c)<br>(d)        | M1<br>M1<br>A1<br>M1<br>B1<br>A1<br>B1ft<br>M1<br>A1<br>A1<br>A1<br>M1                                                                                                                                                                                                                                                                       | for standardising with 3.86, 4.5 and 0.4<br>for $1 - p$ where $0.5 for awrt 0.0548 (NB awrt 0.0548 scores 3/3)for standardising with Q_3 or Q_1 (o.e.), 4.5 and 0.4 and setting equal to a z value, 0.69for use of 0.67,,  z , 0.675 This may be implied by a final answer of 4.769 or 4.2awrt 4.77 or awrt 4.23 for Q_1 correctly labelled NB it is possible to score M1B0A1awrt 4.23 if Q_3 given in (i) or awrt 4.77 if Q_1 given in (i) ft their part (b)(i)You will need to check whether Q_1 + Q_3 = 9use of 1.5(Q_3 - Q_1) ft their Q_3 and Q_1 If these are not correct then working must be shfor lower limit awrt 3.42 to 3.43for upper limit awrt 5.57 to 5.58for a correct standardisation for either their 3.42 or their 5.58 May be implied by awrawrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 <  z  < 0.7<br>2302<br>nown                                                      |  |  |  |
| (a)<br>(b)(i)<br>(b)(ii)<br>(c)<br>(d)        | M1           M1           A1           M1           B1           A1           B1ft           M1           A1           M1           A1           M1           A1           M1           A1           A1           A1           A1           A1           A1           A1           A1           A1                                           | for standardising with 3.86, 4.5 and 0.4<br>for $1 - p$ where $0.5  for awrt 0.0548 (NB awrt 0.0548 scores 3/3) for standardising with Q_3 or Q_1 (o.e.), 4.5 and 0.4 and setting equal to a z value, 0.62for use of 0.67,,  z , 0.675 This may be implied by a final answer of 4.769 or 4.2awrt 4.77 or awrt 4.23 for Q_1 correctly labelled NB it is possible to score M1B0A1awrt 4.23 if Q_3 given in (i) or awrt 4.77 if Q_1 given in (i) ft their part (b)(i)You will need to check whether Q_1 + Q_3 = 9use of 1.5(Q_3 - Q_1) ft their Q_3 and Q_1 If these are not correct then working must be shfor upper limit awrt 5.57 to 5.58for a correct standardisation for either their 3.42 or their 5.58 May be implied by awrtawrt 2.7 If lower/upper limits are incorrect then the standardisation must be shownfor a correct standardisation for their 3.42 and their 5.58 May be implied by awrt -2.2.7 If lower/upper limits are incorrect then the standardisation must be shownfor a correct standardisation for their 3.42 and their 5.58 May be implied by awrt -2.2.7 If lower/upper limits are incorrect then the standardisation must be shownfor a correct standardisation for their 3.42 and their 5.58 May be implied by awrt -2.2.7 If lower/upper limits are incorrect then the standardisation must be shownor clear use of symmetry e.g. (0.9965 - 0.5) \times 2 Do not allow use of negative limits$                                           | 5 <  z  < 0.7<br>2302<br>nown<br>rt -2.7 or<br>7 <b>and</b> awrt<br>s              |  |  |  |
| (a)<br>(b)(i)<br>(b)(ii)<br>(c)<br>(d)        | M1<br>M1<br>A1<br>M1<br>B1<br>A1<br>B1ft<br>M1<br>A1<br>M1<br>A1ft<br>A1*                                                                                                                                                                                                                                                                    | for standardising with 3.86, 4.5 and 0.4<br>for $1 - p$ where $0.5 for awrt 0.0548 (NB awrt 0.0548 scores 3/3)for standardising with Q_3 or Q_1 (o.e.), 4.5 and 0.4 and setting equal to a z value, 0.65for use of 0.67,,  z , 0.675 This may be implied by a final answer of 4.769 or 4.2awrt 4.77 or awrt 4.23 for Q_1 correctly labelled NB it is possible to score M1B0A1awrt 4.23 if Q_3 given in (i) or awrt 4.77 if Q_1 given in (i) ft their part (b)(i)You will need to check whether Q_1 + Q_3 = 9use of 1.5(Q_3 - Q_1) ft their Q_3 and Q_1 If these are not correct then working must be shfor lower limit awrt 3.42 to 3.43for upper limit awrt 5.57 to 5.58for a correct standardisation for either their 3.42 or their 5.58 May be implied by awrtawrt 2.7 If lower/upper limits are incorrect then the standardisation must be shownfor a correct standardisation for their 3.42 and their 5.58 May be implied by awrt -2.2.7 If lower/upper limits are incorrect then the standardisation must be shownor clear use of symmetry e.g. (0.9965-0.5) \times 2 Do not allow use of negative limitsanswer is given so there must be a fully correct solution given with no errors Allow (better or 0.9965 - 0.0035 oe or 1 - 0.0035 - 0.0035 oe$                                                                                                                                                                                                          | 5 <  z  < 0.7<br>2302<br>nown<br>rt -2.7 or<br>7 <b>and</b> awrt<br>s<br>0.9930 or |  |  |  |
| (a)<br>(b)(i)<br>(b)(ii)<br>(c)<br>(d)<br>(e) | M1<br>M1<br>A1<br>M1<br>B1<br>A1<br>B1ft<br>M1<br>A1<br>A1<br>M1<br>A1ft<br>A1*<br>M1                                                                                                                                                                                                                                                        | for standardising with 3.86, 4.5 and 0.4<br>for $1 - p$ where $0.5 \le p \le 1$<br>for awrt 0.0548 ( <b>NB</b> awrt 0.0548 scores 3/3)<br>for standardising with $Q_3$ or $Q_1$ (o.e.), 4.5 and 0.4 and setting equal to a <i>z</i> value, 0.65<br>for use of 0.67,, $ z $ , 0.675 This may be implied by a final answer of 4.769 or 4.2<br>awrt 4.77 or awrt 4.23 for $Q_1$ correctly labelled <b>NB</b> it is possible to score M1B0A1<br>awrt 4.23 if $Q_3$ given in (i) or awrt 4.77 if $Q_1$ given in (i) ft their part (b)(i)<br>You will need to check whether $Q_1 + Q_3 = 9$<br>use of $1.5(Q_3 - Q_1)$ ft their $Q_3$ and $Q_1$ If these are not correct then working must be sh<br>for lower limit awrt 3.42 to 3.43<br>for upper limit awrt 5.57 to 5.58<br>for a correct standardisation for either their 3.42 or their 5.58 May be implied by awr<br>awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown<br>for a correct standardisation for their 3.42 and their 5.58 May be implied by awr -2.<br>2.7 If lower/upper limits are incorrect then the standardisation must be shown<br>or clear use of symmetry e.g. $(0.9965 - 0.5) \times 2$ Do not allow use of negative limits<br>answer is given so there must be a fully correct solution given with no errors Allow (better or $0.9965 - 0.0035$ oe or $1 - 0.0035 - 0.0035$ oe<br>for writing or using P(5 < L < '5.58') Maybe implied by awrt 0.102            | 5 <  z  < 0.7<br>2302<br>nown<br>rt -2.7 or<br>7 <b>and</b> awrt<br>s<br>0.9930 or |  |  |  |
| (a)<br>(b)(i)<br>(b)(ii)<br>(c)<br>(d)<br>(e) | M1           M1           M1           A1           B1           A1           B1ft           M1           A1           M1           A1           M1           A1           A1ft           A1*           M1           A1 | for standardising with 3.86, 4.5 and 0.4<br>for $1 - p$ where $0.5 for awrt 0.0548 (NB awrt 0.0548 scores 3/3)for standardising with Q_3 or Q_1 (o.e.), 4.5 and 0.4 and setting equal to a z value, 0.62for use of 0.67,,  z , 0.675 This may be implied by a final answer of 4.769 or 4.2awrt 4.77 or awrt 4.23 for Q_1 correctly labelled NB it is possible to score M1B0A1awrt 4.23 if Q_3 given in (i) or awrt 4.77 if Q_1 given in (i) ft their part (b)(i)You will need to check whether Q_1 + Q_3 = 9use of 1.5(Q_3 - Q_1) ft their Q_3 and Q_1 If these are not correct then working must be shfor lower limit awrt 5.57 to 5.58for a correct standardisation for either their 3.42 or their 5.58 May be implied by awrtawrt 2.7 If lower/upper limits are incorrect then the standardisation must be shownfor a correct standardisation for their 3.42 and their 5.58 May be implied by awrt -2.2.7 If lower/upper limits are incorrect then the standardisation must be shownor clear use of symmetry e.g. (0.9965 - 0.5) \times 2 Do not allow use of negative limitsanswer is given so there must be a fully correct solution given with no errors Allow (better or 0.9965 - 0.0035 oe or 1 - 0.0035 - 0.0035 oefor writing or using P(5 < L < 5.58') Maybe implied by awrt 0.102awrt 0.102$                                                                                                                                                              | 5 <  z  < 0.7<br>2302<br>nown<br>rt -2.7 or<br>7 <b>and</b> awrt<br>s<br>0.9930 or |  |  |  |
| (a)<br>(b)(i)<br>(b)(ii)<br>(c)<br>(d)<br>(e) | M1           M1           M1           M1           B1           A1           B1ft           M1           A1           M1           A1           M1           A1           M1           A1           A1           A1           A1           M1           A1           M1           A1ft           A1*           M1           A1           M1 | for standardising with 3.86, 4.5 and 0.4<br>for $1 - p$ where $0.5 for awrt 0.0548 (NB awrt 0.0548 scores 3/3)for standardising with Q_3 or Q_1 (o.e.), 4.5 and 0.4 and setting equal to a z value, 0.69for use of 0.67,,  z , 0.675 This may be implied by a final answer of 4.769 or 4.2awrt 4.77 or awrt 4.23 for Q_1 correctly labelled NB it is possible to score M1B0A1awrt 4.23 if Q_3 given in (i) or awrt 4.77 if Q_1 given in (i) ft their part (b)(i)You will need to check whether Q_1 + Q_3 = 9use of 1.5(Q_3 - Q_1) ft their Q_3 and Q_1 If these are not correct then working must be slfor lower limit awrt 3.42 to 3.43for upper limit awrt 5.57 to 5.58for a correct standardisation for either their 3.42 or their 5.58 May be implied by awrtawrt 2.7 If lower/upper limits are incorrect then the standardisation must be shownfor a correct standardisation for their 3.42 and their 5.58 May be implied by awrt -2.2.7 If lower/upper limits are incorrect then the standardisation must be shownor clear use of symmetry e.g. (0.9965 - 0.5) \times 2 Do not allow use of negative limitsanswer is given so there must be a fully correct solution given with no errors Allow 0better or 0.9965 - 0.0035 oe or 1 - 0.0035 - 0.0035 oefor writing or using P(5 < L < 5.58) Maybe implied by awrt 0.102awrt 0.102for a correct probability statement in either form or a correct ratio ft their lower and uAllow \frac{P(5 < L < 5.58)}{0.993}$ | 5 <  z  < 0.7<br>2302<br>nown<br>et -2.7 or<br>7 <b>and</b> awrt<br>s<br>0.9930 or |  |  |  |

| Question |                                                                                                                                              | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Marks                         |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|
| 6 (a)    | An increa                                                                                                                                    | ase/change of 1°C will allow an extra 2.72 grams [of sugar] to dissolve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1                            |  |
|          |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1)                           |  |
| (b)      | 151.2 + 2                                                                                                                                    | $2.72 \times 90 = 396$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1 A1                         |  |
| (-)      | T1                                                                                                                                           | $(0.0001 \cdot \cdot 1 \cdot \cdot$ | (2)                           |  |
| (c)      | I he temp                                                                                                                                    | perature/90[°C] is outside of the range ; so (may be) unreliable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BI; dBI                       |  |
|          |                                                                                                                                              | (3110)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2)                           |  |
| (d)      | Use of $\overline{y} = 151.2 + 2.72\overline{x}$ So $\sum x = \left(\frac{\frac{5119}{12} - 151.2}{2.72}\right) \times 12 = 479.63235$       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |  |
|          | $S_{yy} = 85$                                                                                                                                | $1093 - \frac{3119^2}{12} [= 40412.9166]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1                            |  |
|          | $S_{xx} = 24500 - \frac{'479.63235'^2}{12} [= 5329.4005]$                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |  |
|          | $S_{xy} = 2.7$                                                                                                                               | 72×'5329.4005'[=14495.9693]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1                            |  |
|          | $r = \frac{'14495.9693'}{\sqrt{5329.4005'\times'40412.9166'}}  \text{or}  r = 2.72 \times \sqrt{\frac{'5329.4005'}{'40412.9166'}}$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |  |
|          | = 0.98                                                                                                                                       | 38 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1*                           |  |
|          |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (7)                           |  |
| (e)      | e.g. the p                                                                                                                                   | points lie reasonably close to a straight line/positive correlation and the PMCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1 B1                         |  |
|          | 1s close t                                                                                                                                   | o I therefore supports a linear model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2)                           |  |
|          |                                                                                                                                              | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2)<br>Total 14               |  |
| (a)      | B1                                                                                                                                           | for a correct interpretation of the gradient in context including grams and degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |  |
| (b)      | M1                                                                                                                                           | for substitution of 90 into the regression line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |  |
|          | A1                                                                                                                                           | cao 396 on its own scores 2 out 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |  |
| (c)      | B1                                                                                                                                           | for a comment that implies the temperature/90[°C] is outside of the range. Allow ext<br>not linked to 396. (Do not allow comments that imply that 396 is out of range or the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rapolation if<br>use of "it") |  |
|          | dB1                                                                                                                                          | dependent on 1st B1 for a correct conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |  |
| (d)      | M1 for clear use of the regression line to find $\sum x$ or $\overline{x}$ (may be implied by 3 <sup>rd</sup> M1)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |  |
|          | A1 $\sum x = awrt  480 \text{ or } \overline{x} = awrt  40 \pmod{2^{rd} M1}$                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |  |
|          | M1 for a correct expression for $S_{yy}$ May be implied by awrt 40400                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |  |
|          | M1 for a correct expression for $S_{xx}$ ft their $\sum x$ or $\overline{x}$ May be implied by awrt 5330                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |  |
|          | M1 for use of the gradient to find $S_{xy}$ ft their $S_{xx}$ May be implied by awrt 14500 or use of<br>$r = b \sqrt{\frac{S_{xx}}{S_{yy}}}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |  |
|          |                                                                                                                                              | for a correct expression for r ft their $S_{xy}$ , $S_{xx}$ and $S_{yy}$ or 2.72, $S_{xx}'$ and $S_{yy}'$ . If the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | se are not                    |  |
|          | M1 correct then they must be labelled before an expression for $r$ is given for this mark to be awarded                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |  |
|          | A1*                                                                                                                                          | Answer is given so a fully correct solution must be seen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |  |
| (e)      | <b>B</b> 1                                                                                                                                   | B1 for either the points lie reasonably close to a straight line/points or data are linear/positive correlation or the PMCC is close to 1 (Ignore any reference to strength)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |  |
|          |                                                                                                                                              | for both the points lie reasonably close to a straight line/points or data are linear/posi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tive                          |  |